

JW4056/JW4056A

1A/18V Linear Charger for

Single Cell Li-Ion Battery with Thermal Regulation

Preliminary Specifications Subject to Change without Notice

DESCRIPTION

The JW®4056 and JW4056A are complete constant-current/ constant-voltage Li-lon and Li-Polymer linear chargers targeted at spaced-limited portable applications. Furthermore, the JW4056 and JW4056A are specifically designed to work within USB power specifications.

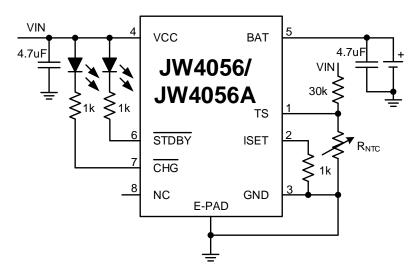
No external sense resistor is needed, and no blocking diode is required due to the internal MOSFET architecture. Thermal feedback regulates the charge current to limit the die temperature during high power operation or high ambient temperature. The charge voltage is fixed at 4.2V (JW4056) or 4.35V (JW4056A), and the charge current can be programmable externally. The device terminates the charge cycle when the charge current drops to 1/10 of the presetting value after the final float voltage is reached.

When the input supply is removed, the JW4056/JW4056A enters a low current state, dropping the battery drain current to less than 1µA. The JW4056/JW4056A can be put into shutdown mode, reducing the supply current to 75µA during adaptor is present. The other features of JW4056/JW4056A include external battery temperature monitor, two open-drain outputs indicator, and automatic recharge function.

The JW4056/JW4056A guarantees robustness with input and battery reverse connection protection, input over voltage protection, thermal shutdown and under voltage lockout.

Company's Logo is Protected, "JW" and "JOULWATT" are Registered

FEATURES


- 18-V Input Rating
- Programmable Charge Current Up to 1A
- Charging Management (Trickle Charge/ Constant Current Charge/ Constant Voltage Charge/ Charge Termination/Auto Recharge)
- 4.2V(JW4056) / 4.35V(JW4056A) Charge Termination Voltage with ±1% Accuracy
- 2.9V Trickle Charge Threshold
- 1/10 I_{CHG} Charge Termination
- Soft-Start Limits Inrush Current
- Operation Over JEITA Range via Battery NTC
 1/2 Fast-Charge Current at Cold, 4.1V at Hot
- Input and Battery Reverse Polarity Protection, Input Over Voltage Protection, Input Under Voltage Lockout, Thermal Shutdown
- Charge Status Indicators
- Available in ESOP8 Package

APPLICATIONS

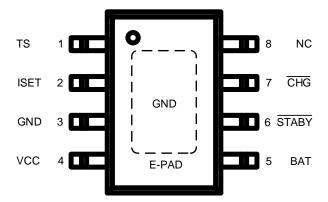
- Portable Media Players, Digital Cameras
- Bluetooth Applications
- Toys
- Li-lon/ Li-Polymer Battery Powered Devices

Trademarks of JoulWatt technology Inc.

TYPICAL APPLICATION

Typical application circuit

ORDER INFORMATION


DEVICE ¹⁾	PACKAGE	TOP MARKING ²⁾
IVAACE CE COD#TDDDE	ECOD9	JW4056
JW4056ESOP#TRPBF	ESOP8	YW□□□□
IVA/AOE CA E COD#TDDDE	ECOD9	JW4056A
JW4056AESOP#TRPBF	ESOP8	YW□□□□

Notes:

PIN CONFIGURATION

TOP VIEW

ABSOLUTE MAXIMUM RATING1)

VCC	5.5V to 18V
VCC-BAT	8.5V to 18V
BAT	
TS	5.5V to 18V
STDBY, CHG	
ISET, NC	0.3V to 6.5V
Junction Temperature ²⁾	150°C
Lead Temperature	260°C
Storage Temperature	65°C to +150°C
Human Body Model (HBM)	±2kV
Charged-Device Model (CDM)	±1kV
RECOMMENDED OPERATING CONDITIONS ³⁾	
VCC	4.3V to 7.5V
Operation Junction Temperature (T _J)	40°C to +125°C

THERMAL PERFORMANCE⁵⁾

 θ_{JA} θ_{JC}

ESOP8......50...10°C/W

Note:

. ...

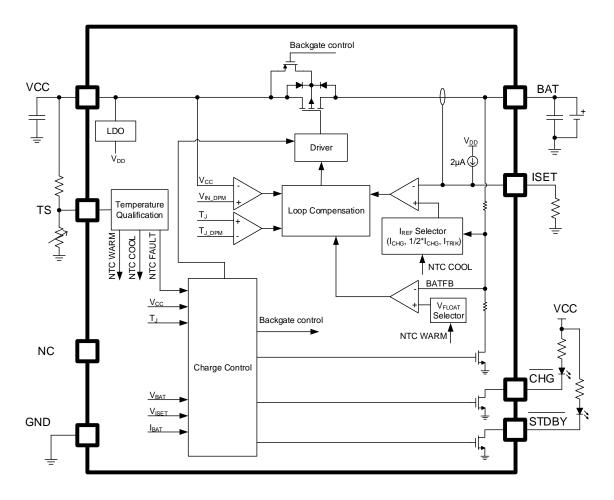
- 1) Exceeding these ratings may damage the device. These stress ratings do not imply function operation of the device at any other conditions beyond those indicated under RECOMMEND OPERATION CONDITIONS.
- 2) The JW4056/JW4056A includes thermal protection that is intended to protect the device in overload conditions. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.
- 3) The device is not guaranteed to function outside of its operating conditions.
- 4) The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_{D(MAX)} = (T_{J(MAX)} T_A)/\theta_{JA}$.
- 5) Measured on JESD51-7, 4-layer PCB

ELECTRICAL CHARACTERISTICS

V_{CC} =5 V , T_A =25 C , unless otherwise stated						
Item	Symbol	Condition	Min.	Тур.	Max.	Units
INPUT						
Input operation voltage range	Vcc		4.3	5	7.5	V
Input under-voltage lock-out threshold	Vuv	Vcc rising, Vcc>Vbat+ Vasd	3.9	4.0	4.1	V
Input under-voltage lock-out hysteresis	Vuv_HYS	Vcc falling, Vcc>VBAT+ VASD	70	120	170	mV
V _{CC} -V _{BAT} lock-out threshold	V _{ASD}	V _{CC} rising	70	100	140	mV
VCC-VBAT IOCK-OUT THESHOID		Vcc falling	10	45	75	mV
Input over-voltage protection threshold	Vovp	Vcc rising	7.3	7.5	7.7	V
Hysteresis on input OVP	Vovp_hys	Vcc falling	100	150	210	mV
Input OVP deglitch time ⁶⁾	t _{OVP_DEG}			50		μs
Input OVP recovery time ⁶⁾	tovp_rec			400		μs
Input pull-down resistance ⁶⁾	R _{PD}			100		kΩ
QUIESCENT CURRENT						
	lo_vcc	I _{VCC} -I _{BAT} , charge mode		1.12	1.6	mA
		Charge terminated		120	220	μΑ
Quiescent V _{CC} supply current		RISET disconnected; Or Vcc <vbat+vasd; or="" td="" vcc<vuv<=""><td></td><td>75</td><td>160</td><td>μΑ</td></vbat+vasd;>		75	160	μΑ
	Іо_ват	Charge terminated		2.5	6	μΑ
Quiescent BAT supply current		RISET disconnected; Or Vcc <vbat+vasd; or="" td="" vcc<vuv<=""><td></td><td>±1</td><td>±2</td><td>μΑ</td></vbat+vasd;>		±1	±2	μΑ
BATTERY CHARGER						
	VFLOAT	JW4056, 0℃≤T _A ≤85℃, TS normal temperature.	4.158	4.2	4.242	V
Battery regulation voltage		JW4056A, 0°C≤T _A ≤85°C, TS normal temperature.	4.306	4.35	4.394	V
		TS hot temperature, JW4056, JW4056A	4.02	4.06	4.10	V
Soft-start time ⁶⁾	tss	I _{BAT} =0 to I _{CHG}		25		ms
Power FET "ON" resistance (between VCC and BAT) ⁶⁾	Ron			700		mΩ

L pin voltage on CC charge phase		R _{ISET} =1kΩ~10kΩ, TS normal temperature	0.9	1.0	1.1	V
I _{SET} pin voltage on CC charge phase	V _{ISET_CC}	R_{ISET} =1k Ω ~10k Ω , TS cold temperature	0.475	0.5	0.525	V
I _{SET} pin voltage on trickle charge phase	V _{ISET_TRIK}	R_{ISET} =1k Ω ~10k Ω , trickle charge	0.08	0.1	0.12	V
Constant current factor	Kcc		900	1000	1100	ΑΩ
Trickle current factor	K _{TRIK}		40	80	120	ΑΩ
Charge current in CC charge phase	Існв	Vcc>Vuv, Vcc>Vbat+Vasd, Vbat>Vtrik, not DPM	K _{CC} / R _{ISET}		А	
Charge current in trickle charge phase	I _{TRIK}		K _{TRIK} / R _{ISET}		Α	
Trickle charge threshold voltage	V _{TRIK}	V _{BAT} rising	2.8	2.9	3.0	V
Trickle charge hysteresis voltage	VTRIK_HYS		150	250	350	mV
Deglitch time on charge phase switch		Trickle to CC charge		25		ms
between trickle mode and CC mode ⁶⁾	ttc_deg	CC to trickle charge		25		ms
Termination comparator detection threshold	I _{TERM}		0.7	0.11	0.145	×I _{CHG}
Termination detected deglitch time ⁶⁾	t _{TERM}			50		ms
Recharge detection threshold	ΔV_{RCHG}	VBAT falling, VFLOAT-VRCHG	50	100	150	mV
Recharge detected deglitch time ⁶⁾	t RCHG			50		ms
VINDPM AND THERMAL REGULATION						
Input voltage threshold when charge current is reduced	VIN_DPM		4.15	4.3	4.45	V
Junction temperature threshold when charge current is reduced ⁶⁾	T _{J_DPM}			125		$^{\circ}$ C
Thermal shut down threshold ⁶⁾	T _{J_SD}	T _J rising		155		$^{\circ}\!\mathbb{C}$
Thermal shut down hysteresis ⁶⁾	T _{J_SDHYS}			20		$^{\circ}\!\mathbb{C}$
ISET						
ISET pin pull-up current ⁶⁾	I _{ISET}			2		μΑ
Manual shutdown threshold voltage	V_{MSD}	ISET pin rising	1.45	1.5	1.55	V
manual shutuown tilleshuu voltage		ISET pin falling	1.15	1.2	1.25	V
Maximum charge current	I _{CHG_MAX}	ISET connected to GND	1.15	1.3	1.45	Α
INDICATORS						

Output LOW voltage on STDBY pin ⁶⁾	V _{STDBY}	I _{STDBY} = 5mA, sink current			0.6	V	
Output LOW voltage on CHG pin ⁶⁾	V _{CHG}	I _{CHG} = 5mA, sink current			0.6	٧	
BATTERY-PACK NTC MONITOR (JEITA	BATTERY-PACK NTC MONITOR (JEITA Thermistor Comparator)						
0°C threshold	V _{TS_0}	TS rising	46.62	47.62	48.62	%Vcc	
10°C threshold	V _{TS_10}	TS rising	36.45	37.45	38.45	%Vcc	
45℃ threshold	V _{TS_45}	Falling	13.07	14.07	15.07	%Vcc	
60°C threshold	V _{TS_60}	Falling	8.14	9.14	10.14	%V _{CC}	
Disable NTC monitor function threshold	V _{TS_DIS}		3	4	5	%V _{CC}	
Deglitch time on thermistor comparator output transition	t _{TS_DEG}			25		ms	
VCC, BAT REVERSE LEAKAGE							
VCC reverse leakage	Ivcc_r	V _{CC} = -5V, V _{BAT} = V _{FLOAT}			10	mA	
BAT reverse leakage	I _{BAT_R}	VCC=5V, V _{BAT} = -V _{FLOAT}			5	mA	


Notes:

6) Guaranteed by design.

PIN DESCRIPTION

Pin No.	Name	Description				
1	TS	External NTC thermistor input. Program temperature window with a resistor divider				
1	15	from VCC to TS to GND. It is recommended to use a 103AT thermistor.				
		ISET pin sets the charge current of constant-current phase by regulating the ISET				
2	ISET	voltage at 1V or 0.5V (at cool temperature). A resistor is connected from ISET pin to				
2	ISET	ground to set the constant-current as $I_{\text{CHG}}\text{=}1000\text{A}\Omega/R_{\text{ISET}}.$ In trickle charge phase, t				
		ISET voltage is regulating at 0.1V and set the trickle-current as I_{TRIK} =100A Ω / R_{ISET} .				
3	GND	Ground. Connect to the thermal pad and to the ground rail of the circuit.				
4	VCC	Input power connection. This pin provides power to the charger. Connect bypass				
4	VCC	ceramic capacitor 1µF to 10µF to ground.				
		Charge current output. Provides charge current to the battery and regulates the final				
5	BAT	float voltage to 4.2V or 4.35V. Bypass BAT to GND with a 4.7µF to 47µF ceramic				
		capacitor.				
6	OTA DV	Open-drain charge finished status indication output. STABY pulls to LOW only when				
0	STABY	the charging is complete. Otherwise, STABY is high impedance.				
7	<u></u>	Open-drain charges status indication output. When the battery is charging, the $\overline{\text{CHG}}$				
,	CHG	pulled low by an internal N-channel MOSFET. In other status, $\overline{\text{CHG}}$ is high impedance.				
8	NC	Do not make a connection to this terminal (for internal use) – Do not route through this				
0	INC	terminal.				
	Thermal Pad	Exposed pad. The exposed package pad is ground and must be soldered to the PCB				
-	memiai Pad	for maximum heat transfer.				

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The JW4056 and JW4056A are complete constant-current/ constant-voltage linear chargers for single cell Li-Ion/ Li-Polymer batteries. The device can deliver up to 1A charge current (using a good thermal PCB layout) with a final voltage accuracy of ±1%. No blocking diode or external current sense resistor is required. The input power source for charging the battery can be an AC adapter or a USB port. When charging from a USB port, the input dynamic power management (V_{IN}-DPM) circuit reduced the input current if the input voltage falls below a threshold, thus preventing the USB port from crashing. An internal thermal limit reduces the charge current if the die temperature attempts to rise above a preset value of approximately 125°C. This feature protects the JW4056/JW4056A from excessive temperature, and allows the user to take full advantage of the power handling capability at a given circuit board without risk of damaging the JW4056/JW4056A or external components.

Normal Charge Cycle

The JW4056/JW4056A powers internal bias circuits from VCC. When VCC rises above UVLO threshold, the device wakes up from sleep mode, the VCC comparator, TS comparator, ISET comparator and junction temperature comparator are active.

JW4056/JW4056A enables the power MOSFET and starts a charge cycle when all the below conditions are valid:

- Vcc above Vuv
- V_{CC} above V_{BAT}+V_{ASD}
- V_{CC} below V_{OVP}
- T_J below T_J _{SD}
- $V_{TS} \circ V_{TS} < V_{TS} \circ 0$ or $V_{TS} < V_{TS} \circ 0$
- V_{ISET}<V_{MSD}

If any one of the above conditions is not valid, the device keeps the power MOSFET off, and draws less than typical 75µA from VCC, draws less than typical 1µA from battery.

The device charges the battery in three phases: trickle charging, constant current charging and constant voltage charging. At the beginning of a charging cycle, the device checks the battery voltage and regulates current and voltage accordingly. If the voltage at the BAT pin is less than V_{TRIK}, the charger enters trickle charging phase, the charge current is reduced to nearly 1/10 of the presetting value. The charger switches to constant current charging phase as the BAT pin voltage rises above V_{TRIK}, the charge current is thus resumed to full presetting value. When the final float voltage is reached, the device enters constant voltage charging phase and charge current begins to decrease until it drops to 1/10 of the presetting value and ends the charge cycle.

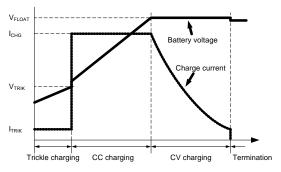


Figure 1. Battery Charging Profile

Programming Charge Current

The charge current is programmable using a single resistor from the ISET pin to ground. The battery charge current is 1000 times the current out of the ISET pin. The program resistor and the charge current are calculated using the following equations:

 R_{ISET} =1000V / I_{CHG} , I_{CHG} = 1000V / R_{ISET}

The ISET pin voltage is regulated at 1V in constant current charging and 0.1V in trickle charging. The charge current can be determined at any time by monitoring the ISET pin voltage using the following equation:

 $I_{BAT}=1000 \times V_{ISET} / R_{ISET}$

Charge Termination and Recharge

JW4056/JW4056A terminates a charge cycle when the battery voltage is above the recharge threshold V_{RCHG} , and the current is below termination current I_{TERM} for longer than t_{TERM} . The termination current is 1/10 I_{CHG} .

After charge termination, JW4056/JW4056A constantly monitors the BAT pin voltage. If the voltage drops below the recharge threshold V_{RCHG} longer than t_{RCHG}, another charge cycle automatic begins and current is once again supplied to the battery. To manually restart a charge cycle after charge termination, the input voltage must be removed and reapplied, or the charge current program resistor R_{ISET} must be disconnected and reconnected.

Input Dynamic Power Management

To meet maximum current in USB spec and avoid over loading the adapter. JW4056/JW4056A features input dynamic power management which continuously monitors the input voltage when charging. When input source is over-loaded, the input voltage falls below the input voltage limit (V_{IN DPM}). The device then reduces the charge current until the input voltage rises above the input voltage limit.

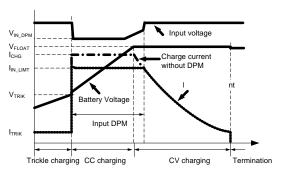


Figure 2. Battery Charging Profile with Input DPM

Thermal Limiting

An internal thermal feedback loop reduces the charge current if the die temperature attempts to rise above a preset value of approximately 125 $^{\circ}\mathrm{C}$, hence prevents the temperature from further increase and ensure device safe operation.

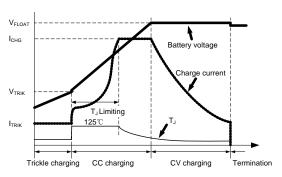


Figure 3. Battery Charging Profile with TJ Limiting

Under-Voltage Lockout

Build-in under-voltage lockout circuit monitors the input voltage and keeps the charger in shutdown mode until VCC rises above the under-voltage lockout threshold. The UVLO circuit has a built-in hysteresis of 150mV. Furthermore, to protect against reverse current in the power MOSFET, the UVLO circuit keeps the charger in shutdown mode if VCC falls below the V_{BAT} +30mV. If the UVLO comparator is tripped, the charger will not come out of shutdown mode until VCC rises 100mV above the battery voltage.

Input Over-voltage

If VCC voltage exceeds V_{OVP} longer than $t_{\text{OVP_DEG}}$, the power MOSFET turns off. During input over-voltage event, $\overline{\text{CHG}}$ and $\overline{\text{STDBY}}$ are forced high impedance. The device will automatically resume normal operation when VCC falls 150mV below over-voltage threshold longer than $t_{\text{OVP_REC}}$.

Manual Shutdown

At any point in the charge cycle, the JW4056/JW4056A can enter shutdown mode by removing $R_{\rm ISET}$ and floating the ISET pin. In shutdown mode, the battery current is less than 1 μ A and the VCC current is less than 75 μ A. A new charge cycle can be initiated by reconnecting the $R_{\rm ISET}$ resistor.

In manual shutdown mode, the ISET pin is in high impedance state. A true open-drain or open-collector structure should be used to disconnect the R_{ISET} , and no external capacitor is allowed to connect to this pin.

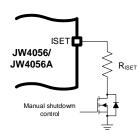


Figure 4. Manual Shutdown Mode Application

Thermistor Qualification

The JEITA guideline emphasized the importance of avoiding a high charge current and high charge voltage at certain low and high temperature ranges.

JW4056/JW4056A provides a single thermistor input TS pin for battery temperature monitor. To initiate a charge cycle, the voltage on TS pin must be within the V_{TS_0} to V_{TS_60} thresholds. If TS voltage exceeds the V_{TS_0} - V_{TS_60} range, the

device suspends charge by turning off the power MOSFET. Charge is resumed when the temperature returns to the $V_{TS_0}-V_{TS_0}$ range.

The TS function for JW4056/JW4056A is designed to follow the JEITA temperature standard for Li-lon and Li-Polymer batteries. At cool temperature (V_{TS_0}-V_{TS_10}), the ISET pin voltage is regulated at 0.5V, the charge current is reduced to half of the presetting charge current. At warm temperature (V_{TS_45}-V_{TS_60}), the battery charge voltage is reduced to 4.1V, and charge termination is temporarily disabled.

The external resistors R_{T1} and R_{T2} enable selecting a temperature window. If R_{TC} and R_{TH} are the thermistor impedances for the Cold (0°C) and Hot (60°C) thresholds, the values for R_{T1} and R_{T2} can be calculated as follows, for a NTC thermistor.

$$R_{T1} = \frac{R_{TC}R_{TH}(K_2 - K_1)}{K_1K_2(R_{TC} - R_{TH})}$$

$$R_{T2} = \frac{R_{TC}R_{TH}(K_2 - K_1)}{R_{TC}(K_1 - K_1K_2) - R_{TH}(K_2 - K_1K_2)}$$

Where, K₁=0.45, K₂=0.8.

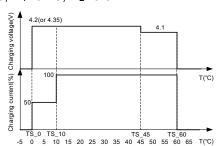
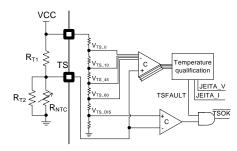



Figure 5. JEITA Profile

Figure 6. Battery Temperature Qualification

The temperature sensing feature can be disabled by connecting TS pin to ground to keep TS pin voltage below $V_{TS\ DIS}$.

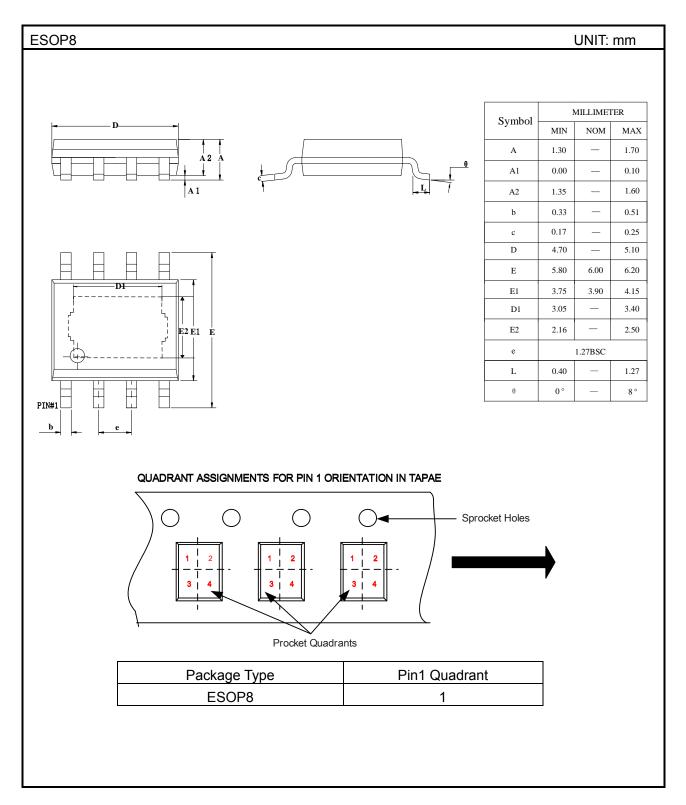
Charge Current Soft-Start

The JW4056/JW4056A includes a soft-start circuit to minimize the inrush current. When a charge cycle is initialed or charge phase transfers from trickle charging to constant current charging, the charge current ramps from zero to the full-scale current over a period of approximately 25ms.

Charge Status Indicators

The JW4056/JW4056A has two open-drain charge status indication output pins. STDBY is pulled LOW only when the charging is complete. Otherwise, STDBY is high impedance. CHG is battery in charging indicator, it is pulled LOW when battery in charging and output high impedance when charge finished or charge disabled.

Charge Status	CHG	STDBY
In charging	Low	High Z
Charge finished	High Z	Low
• Vcc <vuv< td=""><td></td><td></td></vuv<>		
Vcc <vbat+vasd< td=""><td></td><td></td></vbat+vasd<>		
VCC OVP		
TS voltage out of range		
VISET> VMSD	High Z	High Z
VCC reverse connection		
Battery reverse		
connection		
Junction OTP		


VCC Reverse Polarity Protection

JW4056/JW4056A provides reverse polarity input voltage protection. The device keeps in shutdown mode when input voltage polarity is reversed, and two open-drain indication pins are high impedance. The reverse leakage current is below 10mA. When battery is connected, the reverse input voltage should not exceed 5.5V. Exceeding this rating may damage the device.

Battery Reverse Polarity Protection

JW4056/JW4056A provides reverse polarity battery voltage protection. The device keeps in shutdown mode when battery voltage polarity is reversed, and two open-drain indication pins are high impedance. The reverse leakage current is below 5mA. The device will automatically resume normal operation when battery is connected correctly.

PACKAGE OUTLINE

IMPORTANT NOTICE

 Joulwatt Technology Inc. reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein.

- Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden.
- Joulwatt Technology Inc. does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Copyright © 2018 JW4056/JW4056A Incorporated.

All rights are reserved by JoulWatt Technology Inc.